
Automated Provenance Analytics: A Regular Grammar
Based Approach with Applications in Security ∗

Mark Lemay
Boston University
lemay@bu.edu

Wajih Ul Hassan
University of Illinois at

Urbana-Champaign
whassan3@illinois.edu

Thomas Moyer
Nabil Schear Warren Smith

MIT Lincoln Laboratory
{tmoyer,nabil,warren.smith}

@ll.mit.edu

Abstract
Provenance collection techniques have been carefully stud-
ied in the literature, and there are now several systems to
automatically capture provenance data. However, the anal-
ysis of provenance data is often left “as an exercise for
the reader”. The provenance community needs tools that al-
low users to quickly sort through large volumes of prove-
nance data and identify records that require further investi-
gation. By detecting anomalies in provenance data that de-
viate from established patterns, we hope to actively thwart
security threats. In this paper, we discuss issues with cur-
rent graph analysis techniques as applied to data provenance,
particularly Frequent Subgraph Mining (FSM). Then we in-
troduce Directed Acyclic Graph regular grammars (DAGr)
as a model for provenance data and show how they can de-
tect anomalies. These DAGr provide an expressive charac-
terization of DAGs, and by using regular grammars as a for-
malism, we can apply results from formal language theory
to learn the difference between “good” and “bad” prove-
nance. We propose a restricted subclass of DAGr called
deterministic Directed Acyclic Graph automata (dDAGa)
that guarantees parsing in linear time. Finally, we propose
a learning algorithm for dDAGa, inspired by Minimum De-
scription Length for Grammar Induction [1].

∗DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion unlimited.
This material is based, in part, upon work supported by the Assistant Secre-
tary of Defense for Research and Engineering under Air Force Contract
No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, find-
ings, conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Assistant
Secretary of Defense for Research and Engineering.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2017, June 22-23, 2017, Seattle, Washington.
Copyright remains with the owner/author(s).

1. Introduction
Conventional security wisdom assumes that the best way to
secure a system is to build high, strong walls to keep attack-
ers out of the system entirely. However, attackers continually
breach these walls, gaining access to sensitive data and con-
trol over sensitive systems. Until these boundary defenses
are sufficient, techniques will be needed to detect intrusions.

Data provenance provides a detailed history of the own-
ership and processing of data. Provenance supports a wide-
range of applications, from network troubleshooting [22,
23] and forensic analysis of attacks [18] to intrusion detec-
tion [16, 17] and secure auditing [6, 13]. In each case, the
developers built analytic frameworks tailored for the sys-
tem in question and targeting specific types of attacks. Un-
fortunately these “hand-crafted” analytics techniques do not
scale [12], and we need a general solution that can be applied
to any system. Fortunately, data provenance are commonly
represented using Directed Acyclic Graphs (DAG)s [20]. By
viewing provenance as DAGs we can simplify provenance
analysis to DAG analysis.

For any significant attack, the provenance DAG should
be different from the provenance DAGs of normal execu-
tion. If we can differentiate normal graphs from bad graphs,
we could sort through the noise of benign behavior and iden-
tify anomalies that require troubleshooting and remediation.
This strategy would make the attack provenance analytics
easier, general, and scalable.

In this paper, we propose a general purpose DAG anal-
ysis that extends regular grammars to DAGs. Like regular
expressions, we expect these to be a general purpose tool
to analyse DAGs in general and provenance DAGs specif-
ically. We will focus our examples and analysis on a secu-
rity scenario that aims to identify when a given graph dif-
fers from known good graphs, with the end goal of identi-
fying those provenance graphs that require further analysis.
First we explore existing graph analysis techniques, partic-
ularly Frequent Subgraph Mining (FSM), to analyze prove-
nance graphs. There are several deficiencies with FSM in
the context of provenance DAGs that we will illustrate. Then



we will present 2 new DAG modeling frameworks inspired
by existing work in graph grammars, (string) regular gram-
mars, and finite state automata. These frameworks do not
suffer from the problems of FSM.

We are not the first to explore general purpose analytics
for data provenance. The PLUS system proposes the use of
statistical properties of graphs as a rough filtering mecha-
nism [4]. Several query languages have been proposed in-
cluding OPQL [19] and Datalog [11]. Our system is unique
in that it is both automatic and can learn causal relationships
between nodes.

The main contributions of this paper are as follows:

• The definition of DAGr that provides a simple model of
DAGs analogous to regular string grammars.

• A proof that characterizing graphs with DAGr is NP-hard
in general.

• Defining a strict subset of DAGr called dDAGa, where
characterizing graphs takes linear time in the size of the
graph.

• A framework for learning dDAGa from examples.

The rest of this paper is structured as follows: we first re-
view the background on different graph learning techniques
in § 2. In § 4, we give motivating examples for our gram-
matical approach. In subsection 6.4 and § 7 we discuss our
approach for general purpose analytics. In § 8 we give some
rough preliminary results. Finally, we propose future direc-
tions for our work in § 9 before concluding in § 10.

2. Background
2.1 Frequent Subgraph Mining
There has been a large amount of research into general graph
analytics [2, 3, 8]. Since provenance data is represented as
a DAG, we had hoped existing graph analytics techniques
would help us develop the analytics framework we wanted.
Unfortunately little of it seems applicable to data provenance
and DAG analysis more generally.

The most relevant existing techniques for graph analy-
sis are in the field of Frequent Subgraph Mining (FSM).
FSM is generally hard (the problem of subgraph isomor-
phism alone is NP-complete). However, there are many algo-
rithms that mitigate this difficulty with different assumptions
and heuristics [14]. Of particular interest is Chen et. al.’s al-
gorithm that efficiently finds frequent rooted DAGs [7]. Fun-
damentally, FSM algorithms, target noisy graphs, and recog-
nize a small amount of structure within them. We argue that
highly structured DAGs (such as provenance graphs) are bet-
ter modeled with simpler more precise models.

2.2 Grammars and Automata
Grammars and Automata provide a guide for how interest-
ing and precise properties of graphs can be modeled. Classes
of graph derived this way will be called graph grammars.

By reframing the question of graph characterization to one
of graph grammar parsing, we can leverage the extensive
literature on grammars and automata. Since graph gram-
mars should degenerate into (string) grammars, classic string
algorithms provide best case scenarios, and an intractable
string problem will certainly be intractable when extended
to graphs. Equivalences to automata and other mathematical
structures are well studied. The learning problem for (string)
grammars is also well studied [9, 10, 21], and there are well
known limits on what can be learned.

Regular (string) grammars are the simplest languages in
the Chomsky Hierarchy and are perhaps the most studied
grammar in this heavily studied field. Regular grammars are
famously equivalent to Nondeterministic Finite State Au-
tomata (NFA) which are in turn equivalent to Deterministic
Finite State Automata (DFA). Because of this equivalence
Regular grammars can be parsed in linear time. There exists
a standard framework for different DFA learning tasks: al-
gorithms share a standard preprocessing step, state merging
procedure, and search strategies. For the sake of simplicity
and tractability, we limit the discussion in this paper to reg-
ular grammars.

For our security analysis we assume there are many ex-
amples of “good” provenance data, for the target system.
Hopefully we will have few, if any examples of attack prove-
nance data. This corresponds to the case of grammar learn-
ing with only positive examples. The textbook algorithm
for this case is Adriaans and Jacobs’s Minimum Description
Length DFA learning algorithm [1]. Their algorithm makes
use of the standard grammar learning framework, which we
will generalize to DAGs. Researchers that hope to character-
ize DAGs under different assumptions can use our general-
izations and apply them to the appropriate algorithms in the
DFA literature.

2.3 Graph Grammars and Automata
We are not the first to advocate for the use of grammars
and automata to characterize graphs. Regular tree grammars
are well studied and have very nice properties. Like reg-
ular (string) grammars there exist variants of DFA’s that
are equivalently expressive to regular tree grammars. This
means parsing can be performed linearly in the size of the
tree. With a little ingenuity DFA learning techniques can be
applied to these tree DFAs. Babic‘ et. al. have even applied
these in a system security context [5]. Babic‘ et. al.’s work
differs from ours in precision and scope, they attempted to
learn malicious tree structures from positive and negative ex-
amples in general. We attempt to characterize specific pro-
grams from their provenance DAGs and report any structural
deviation.

Another strain of research is centered around the Sub-
due system [15]. Subdue leverages Graph Grammars to find
FSM in general graphs. Subdue also uses the MDL principle
as it’s learning metric. However, Subdue frames the prob-
lem with Context-Sensitive Graph Grammars and interprets



the results over possibly cyclic or undirected graphs, the al-
gorithm can only be tractable by relying on heuristics. Sub-
due like other FSM algorithms, has issues analyzing highly
structured data such as provenance DAGs.

3. Simplifying Provenance DAGs
Though the OPM [20] defines DAGs with information en-
coded on the edges, we will apply a simplifying transforma-
tion that encodes edge labels as nodes. Before transforma-
tion W3C OPM compliant graph is shown in the Figure 1a
and after transformation show in Figure 1b.

 Activity:bash   Activity:email  WasTriggeredBy 

(a)

 Activity  Edge:wasTriggeredBy  Activity 
(b)

Figure 1. (a) Before transformation (b) After transforma-
tion

Additionally, most specific information is removed and
the remaining more general information becomes the node
label. This reduces provenance data to the much more stan-
dard form of a labeled directed graph (specifically a DAG).

This paper will address the algorithms and example
graphs in this more general form. We also stress that the in-
sights from this paper are applicable to any situation where
causal DAGs occur, such as the other W3C PROV 1 prove-
nance model.

4. Motivating Examples
In this section, we present two DAG patterns to motivate
our work. Note that the observations we make on DAGs are
applicable to provenance graphs as they are restricted DAGs.

4.1 Diamond Dag
We present the pattern of diamond DAGs as a simple repre-
sentative of repeating structures:

a

t

b

a

t

b

a

t

b

a . . .

A DAG is in this pattern if it is composed of only of
repeating diamonds. This pattern could correspond to the
provenance of a system that has some data (m) and runs two
processes (t, b) whose outputs overwrite the old data, this
may happen any number of times.

1 https://www.w3.org/TR/prov-primer/

4.2 Only Admins Delete
If we have a system where there are users (u) and administra-
tors (a), who both will view files (v) for some period of time.
Finally administrators will delete some file (d), but users can
only exit (e).

A DAG in this pattern will be:

a v v v . . . d

or

u v v v . . . e

5. Frequent Subgraph Mining (FSM)
One key property of provenance graphs is that there are
repeated substructures in the graph. For example, in the
provenance graph of an Apache Webserver the provenance
subgraphs of each user request will be repeated. There are
many repeated patterns in our motivating examples for this
reason. FSM uses repeated patterns to determine how similar
a graph is to a set of training graphs by comparing their
repeated subgraphs.

5.1 Example: Diamond Dag
If we try to discover the repeating diamond DAG pattern
from examples we will eventually learn the repeated sub-
graph:

a

t

b

a

Which is the subgraph that defined the pattern.
However, depending on the specific FSM algorithm used

and its parameters, we may also learn these repeated sub-
graphs

a

t

b

a

or

a

t

a

t

a

t

If a FSM system is asked if the following DAG is a
diamond DAG

https://www.w3.org/TR/prov-primer/


a

t

b

a

t

b

a

t

The FSM system will only measure a small deviation
since this new graph shares all the common subgraphs of the
diamond DAG pattern and the extension is also a frequent
subgraph of the diamond DAG pattern.

5.2 Example: Only Admins Delete?
Worse, consider the “Only Admins Delete” pattern. If an
attacker, logged in as a user gains privileges and deletes a
file they leave the following data provenance:

u v v v . . . d

FSM will consider the graph to be fine since every proper
subgraph is represented in the training set.

Worse still, many FSM algorithms calculate a score to
determine how similar a questionable graph is to the training
graphs. If this is the case, an attacker can simply boost
their score by performing many mundane actions that will
eventually outweigh any unusual behavior.

5.3 What is FSM’s role for provenance?
These examples show that we want more than FSM can of-
fer for data provenance. We want to characterize patterns and
causality, not just superficial common substructure. FSM is
a tool designed for finding the most structured features of
noisy data, but a poor tool for characterizing highly struc-
tured DAG patterns.

There are potential uses for FSM in data provenance, we
expect reasonable results when the data is noisy. If there is no
recursion in the DAG data, FSM should perform acceptably.
FSM may be sufficient for tasks that do not depend on the
causality of nodes. We do not recommend FSM for security
analysis. It can also serve as a benchmark that dedicated
systems for provenance should easily surpass2.

6. DAGr
Our first contribution is a definition of a Directed Acyclic
Graph regular grammars.

6.1 DAGr Definition
Our definition is intended to be similar to the definition of
right regular (string) grammars.

DAGr is defined as the tuple (N,Σ,P ) where:

• N is a nonempty, finite set of non-terminal nodes.
• Σ is a finite set of node labels.

2 However the number of FSM algorithms, heuristics and assumptions
could make it a misleadingly easy benchmark.

• P is a set of production rules, each of one having the form

A

B

C

. . .

:= B’

A’

C’

. . .

Z

where A,B,C, ..., A′, B′, C ′, ..., Z ∈ N . This means
that A can be transformed into A′, B can be transformed
into B′, and so on with an outgoing edge connected to a
new rewrite node.
Or

A := t

where A ∈ N and t ∈ Σ.

Unlike right regular (string) grammars, we don’t need a
starting set because the 0-arity case of P rules makes it
redundant.

We will restrict our definition with one more condition:
our definition must be symmetric, for every language de-
fined the inverse must also be definable by a DAGr. With-
out this restriction very complicated relationships may exist
between outgoing edges. This also gives our language sym-
metry which reflects the symmetry of string grammars (right
regular string grammars are equivalent to left regular string
grammars). One important and motivating consequence of
this restriction is that all nodes have bounded indegree and
outdegree.

A language defined by a DAGr contains a DAG if the
DAG can be produced by the grammar’s production rules. If
the indegree and outdegree of nodes is limited to 0 or 1, then
this formulation is equivalent to regular string grammars
(with strings encoded as DAGs). If the indegree is limited to
0 and 1, then this formulation is equivalent to regular regular
tree grammars.

We considered several definitions for DAGr, including
transition rules with unbounded inputs, and further work
could be done in that direction. We chose the most restrictive
definition because even parsing DAGr is NP-hard.

In the graph grammars we define below, we will not de-
fine variables that we believe are clear from context. When
there is no choice of the transition rules, we will compose
them. All examples are symmetric according to our restric-
tion, but we will be merciful and withhold the often redun-
dant definition of the reverse graph.

6.2 Example: Diamond DAG
Consider the diamond DAG from before. We can define a
reasonable DAGr grammar with the rules:



:= A

A := A’ T

A’ := a B

:=

T

B

t

b

A

A := a

This demonstrates the flexibility of such an atomic graph
grammar description. Subgraphs can be built out of these
grammar productions and do not need to be explicitly en-
capsulated (like in Subdue).

However, by restricting the class to regular grammars we
do lose some precision.

a

t

b

a

t

b

a a

is also parsable from the above grammar. Like their string
counterparts DAGrs have a bounded memory on each node,
and some structures can only be partially captured. A context
free grammar specification would solve some of these prob-
lems. For patterns like the diamond DAGs the problem can
be mitigated if the number roots or leaves are fixed, which
we assume to be the case in the context of data provenance.

6.3 Example: Only Admins Delete!
The indegree and outdegree of every node in the “Only
Admins Delete” pattern is 0 or 1 so this pattern perfectly
reduces to the equivalent regular expression.

uv*e|av*d

6.4 DAGr Parsing
Our second contribution is to prove DAGr parsing is NP-
hard (which we present in the Appendix). This should set
our expectations for what can be achieved with DAG gram-
mar parsing in general, since our intentionally restricted def-
inition of DAGr will be a subcase of many reasonable graph
grammars. As such, we do not recommend using DAGr (or
more powerful grammars) for real time security sensitive

tasks, though they and DAGr could be useful in other sit-
uations. The hardness of parsing presumably increases the
difficulty of grammar learning tasks, which is why we will
not present a learning algorithm for DAGr.

7. dDAGa
The proof of NP-hardness gives us insight into how we
can restrict DAGr for efficient parsing. The difficulty comes
from “lateral dependencies.” A node that is parsed with one
production rule can have drastic effects on how another node
must be parsed, even when the nodes are not descendants of
each other. However, we want to characterize causal phe-
nomenon: every node should be judged valid or invalid by
only its inputs and outputs. Analogously to how a state as-
signed to a symbol from a DFA is completely determined by
the path taken to reach it, we want a state assigned to be de-
termined only by its input and output. By restricting DAGr,
we can have something like regular expressions for DAGs,
which can be used as causal models for provenance DAGs.

We can achieve this efficiently by assigning two sets of
symbols: input symbols, Q→, and output symbols, Q←.
Input symbols can only be produced by looking at other
input symbols that form a node’s input and the label of that
node. Likewise output symbols can only be produced by
looking at other output symbols that form a node’s output
and the label of that node.

We will use the following convention when writing nodes
that have been marked with input symbols, output symbols,
and node labels:

IN,OUT
a

Where IN ∈ Q→, OUT ∈ Q← and a ∈ Σ

7.1 dDAGa Definition
With this in mind, we propose a definition for dDAGa ex-
tending standard notation for DFAs.

dDAGa is defined as the tuple (Q→, Q←, Σ,M, δ→, δ←)
where:

• Q→ and Q← are nonempty, finite and disjoint sets of
input and output symbols.

• M : (Q→ ×Q←) are acceptable pairings of input and
output symbols.

• Σ is a finite set of node labels.
• δ→ and δ← are input and output transition functions. δ→

is defined where A,B,C, ..., Z ∈ Q→, and z ∈ Σ.
δ→ (z, (A,B,C, ...)) = Z, this will reflect in our graph
as:



A,

B,

C,

...

Z,
z

Where is a wildcard that highlights what information is
ignored by δ→. δ← is defined symmetrically.

This formulation is equivalent to that of having an input
and output deterministic tree automata with a map making
explicit where the trees can join with what symbols.

Like in the DAGr case, dDAGa is expressive enough to
model regular string grammars and regular tree grammars.

7.2 dDAGa Parsing
A dDAGa can be parsed in 4 linear passes (in proportion to
the number of edges + nodes). The following pseudo-code
makes this explicit

7.3 dDAGa Learning
Due to the deterministic nature of dDAGa, we can extend the
standard DFA learning infrastructure to DAGs. DFA learn-
ing algorithms are generally constructed out of the following
three functions:

• The bf preprocessing function create a maximal prefix
DFA that encodes all observations and does not recurse.

• The bf state merging function takes an automata and
makes a new automata such that 2 states indistinguish-
able and is consistent with the previous automata.

• Finally a bf search strategy a searches through the space
of automata created from merges. There are several dif-
ferent strategies with the most popular being “evidence
driven” or greedy.

These components are explained further in subsequent
subsections.

7.3.1 Preprocessing Function
In DFA learning a maximal prefix tree automata is created
from all data as a preprocessing step. In our extended func-
tion we create maximal prefix and suffix dDAGa.

This process is similar to the parsing code except that a
fresh input and output symbol is created when new transi-
tions are discovered.

For example, if we are given

d e f p a r s e ( a : dDAGa , dag : DAG) :
# A map from nodes t o t h e i r i n p u t symbols
i n p u t m a p = d i c t ( )
# A map from nodes t o t h e i r o u t p u t symbols
ou tpu t map = d i c t ( )

o r d e r = dag . t o p o l o g i c a l s o r t

# Move f o r w a r d t h r o u g h t h e t o p o l o g i c a l
s o r t and a s s i g n t h e f u l l y d e t e r m i n e d
i n p u t symbol f o r e v e r y node

f o r node i n o r d e r :
p a r e n t s y m b o l s = map ( node . p a r e n t s ,

i n p u t m a p )
i n s y m b o l = a . δ→ ( node . l a b e l ,

p a r e n t s y m b o l s )
i n p u t m a p [ node ] = i n s y m b o l

# Move backward t h r o u g h t h e t o p o l o g i c a l
s o r t and a s s i g n t h e f u l l y d e t e r m i n e d
o u t p u t symbol f o r e v e r y node

f o r node i n o r d e r . r e v e r s e :
c h i l d s y m b o l s = map ( node . c h i l d r e n ,

ou tpu t map )
o u t s y m b o l = a . δ← ( node . l a b e l ,

c h i l d s y m b o l s )
ou tpu t map [ node ] = o u t s y m b o l

# F i n a l l y c o n f i r m e v e r y node has an
a p p r o p r i a t e symbol p a i r composed from
i t s i n p u t and o u t p u t symbols

f o r node i n o r d e r :
i f n o t a .M( i n p u t m a p [ node ] ,

ou tpu t map [ node ] ) :
r e t u r n ” c ou ld n ’ t p a r s e ”

r e t u r n ” c o u l d p a r s e ”

Listing 1. Pseudocode for linear time parsing

a

t

b

a

t

b

a

t

b

a

and

a

t

b

a



as inputs to the preprocessing function. The preprocess-
ing function will create a dDAGa that assigns each input
node the states

1,-10
a

2,-9
t

3,-8
b

4,-7
a

5,-6
t

6,-5
b

7,-4
a

8,-3
t

9,-2
b

10,-1
a

and

1,-4
a

2,-3
t

3,-2
b

4,-1
a

Where input symbols are positive numbers and output
symbols are negative numbers. Note that we can only dif-
ferentiate some nodes by looking at both input and output.
If we had 2 indistinguishable nodes they would be implicitly
merged.

7.3.2 State merging
Most DFA learning algorithms make use of state merging so
we will extend it to dDAGa. State merging in DFA learn-
ing makes 2 states equivalent, possibly inducing cycles that
serve to embed a structure’s inherent repetition. In dDAGa
we merge 2 states by merging the input tree states and merg-
ing the output tree states.

For example if we are given

1,-10
a

2,-9
t

3,-8
b

4,-7
a

5,-6
t

6,-5
b

7,-4
a

8,-3
t

9,-2
b

10,-1
a

and we merge

1,-10
a

4,-7
a

it will result in:

1,-7
a

2,-9
t

3,-8
b

1,-7
a

2,-6
t

3,-5
b

1,-4
a

2,-3
t

3,-2
b

1,-1
a

This can be interpreted as any number of diamond repeats
followed by 2 additional diamond patterns.

If we merge again

1,-7
a

1,4
a

we will get:

1,-1
a

2,-3
t

3,-2
b

1,-1
a

Which captures the repeating diamond pattern as best as
possible.

7.3.3 Search
The out final learning algorithm pairs every 2 differentiable
states, greedily chooses the best available state, and repeats,
until there are no more states or the process is terminated.
The best dDAGa is then presented.

Using the MDL principle we compute the cost to encode
the input and output tree automata. Then we add the cost of
generating the DAG as if it were just an input and output
tree.

In general the cost function is tuneable, can make use
of domain knowledge, and can prevent incompatible states
from being incorrectly merged.

8. Preliminary Results
8.1 Provenance Results
We tested an early version of dDAGa learning on simulated
application level provenance data. The application modeled
a typical internal government web application. Unfortu-
nately the data did not have a recursive structure so the more
advanced features of the analysis were not used. Only an
early version of the preprocessing step was run, this version
of the preprocessing step only dealt with input states, Q→.

We compared this simplified dDAGa learning algorithm
to a FSM analysis. The FSM algorithm was able to discover
all the frequent subgraphs, which is a best case scenario.
We configured our FSM search to characterize graphs as
similar when the computed similarity fell under a given
threshold. The threshold was tuned on some experimental
data, lowering the threshold would increase the false positive
rate, but decrease the true negative rate and vice versa.

We tested against several attack scenarios such as: insert-
ing data into the database without attribution (Unreported
Generator), when data that should be added to the database
was not (Not Added to Database), internal tasks being re-
peated that should only happen once (Two Merges), an un-
expected overwrite in the database (Overwrite in Database),



FSM dDAGa learning3

Normal Run 5.2% 0.0%
Restart Database 4.8% 0.0%

Unreported Generator 9.0% 100.0%
Not Added to Database 100.0% 33.3%4

Two Merges 2.2% 100.0%
Overwrite in Database 34.7% 33.3%

Generate Twice 0.7% 100.0%

Table 1. Shows how many trails were flagged as dissimilar
from the training set by each approach.

and running the entire process twice on the same data when
it should only be run once (Generate Twice). We also tested
against a benign scenario where the database was restarted
(Restart Database).

The first two cases were the regular operations, dDAGa
learning had a 0% false positive rate. In total 27,396 sessions
were analyzed, though many had the same data provenance.
The false positive rate for FSM was the result of an unusual
number of repeated access patterns.

The problems with FSM are well highlighted by this
data, repeating commons structures makes a “bad” graph
appear more normal than a “good” graph (Two Merges and
Generate Twice fall well below the false positive rate).

The limited dDAGa learning performs much better on this
data. But because our provenance data had no real recursive
structure, the more interesting features of the analysis were
not tested on this data.

9. Future Work
The most important next step is to test on real provenance
data to confirm that we can make this theory fully practical.
But there are a number of other interesting directions for
future work:

• Improvements to the cost function. Our choice to min-
imize over the tree automata was somewhat arbitrary,
and there may be more principled MDL approaches. The
MDL principle is a good hypothesis when nothing is
known about data, but there may be many things that are
known about provenance that could produce better mod-
els.

• Learning from positive and negative examples. In DFA
learning this is an “easier” task than learning from only
positive examples.

• Applying more sophisticated search strategies instead of
our greedy strategy. There are more optimized search
procedures for DFA learning, it would be interesting to
see if they apply to dDAGa.

4 Only a modified preprocessing step was run.
4 There were 2 crashes in the training data that prevented some data from
going to the database. dDAGa learning added these to its model.

• Context free grammars are still considered learnable. It
would be interesting to explore their DAG counterpart.

• Solving classic automata problems for dDAGa such as
minimization, equality, and subset testing.

10. Conclusion
We consider graph grammars and automata to be the best
path forward for automating data provenance analytics in
general and for security applications particularly. Current
graph analytics techniques are insufficient for data prove-
nance. We have given definitions for DAGr and dDAGa that
we hope can help guide future research. Finally, we have ex-
plored some of the problems associated with these systems
and have characterized their algorithmic properties.

Availability
An implementation of dDAGa is available at https://

github.com/marklemay/GraphAutomata.

Acknowledgements
This work sprung out of an internship at MIT Lincoln Labo-
ratory. Special thanks goes to Hannah Flynn who gave good
advice on the theoretical aspects of this work, and the re-
viewers who gave excellent comments.

References
[1] Pieter Adriaans and Ceriel Jacobs. Using MDL for grammar

induction. Grammatical Inference: Algorithms and Applica-
tions, pages 293–306, 2006.

[2] Charu C Aggarwal, Haixun Wang, et al. Managing and
Mining Graph Data, volume 40 of Advances in Database
Systems. Springer US, Boston, MA, 2010.

[3] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph
based anomaly detection and description: a survey. Data
Mining and Knowledge Discovery, 29(3):626–688, may 2015.

[4] M David Allen, Adriane Chapman, Len Seligman, and Bar-
bara Blaustein. Provenance for collaboration: Detecting sus-
picious behaviors and assessing trust in information. In Col-
laborative Computing: Networking, Applications and Work-
sharing (CollaborateCom), 2011 7th International Confer-
ence, pages 342–351, Oct 2011.

[5] Domagoj Babić, Daniel Reynaud, and Dawn Song. Recog-
nizing malicious software behaviors with tree automata in-
ference. Formal Methods in System Design, 41(1):107–128,
2012.

[6] Adam Bates, Dave Tian, Kevin Rb Butler, and Thomas Moyer.
Trustworthy Whole-System Provenance for the Linux Kernel.
Usenix Security 2015, page 2015, 2015.

[7] Yen-Liang Chen, Hung-Pin Kao, and Ming-Tat Ko. Mining
dag patterns from dag databases. In International Confer-
ence on Web-Age Information Management, pages 579–588.
Springer, 2004.

[8] Diane J Cook and Lawrence B Holder. Mining Graph Data.
Wiley-Interscience, 2007.

https://github.com/marklemay/GraphAutomata
https://github.com/marklemay/GraphAutomata


[9] Colin De La Higuera. A bibliographical study of grammatical
inference. Pattern recognition, 38(9):1332–1348, 2005.

[10] Colin De La Higuera. Grammatical inference: learning au-
tomata and grammars. Cambridge University Press, 2010.

[11] Saumen Dey, Sven Köhler, Shawn Bowers, and Bertram
Ludäscher. Datalog as a lingua franca for provenance query-
ing and reasoning. In Workshop on the theory and practice of
provenance (TaPP), 2012.

[12] Ashish Gehani, Hasanat Kazmi, and Hassaan Irshad. Scaling
spade to “big provenance”. In Proceedings of the 8th USENIX
Conference on Theory and Practice of Provenance, TaPP’16,
pages 26–33, Berkeley, CA, USA, 2016. USENIX Associa-
tion.

[13] Ragib Hasan, Radu Sion, and Marianne Winslett. The case
of the fake picasso: Preventing history forgery with secure
provenance. In FAST, pages 1–14. USENIX, 2009.

[14] Chuntao Jiang, Frans Coenen, and Michele Zito. A survey
of frequent subgraph mining algorithms. The Knowledge
Engineering Review, 28(01):75–105, 2013.

[15] Nikhil S Ketkar, Lawrence B Holder, and Diane J Cook. Sub-
due: Compression-based frequent pattern discovery in graph
data. In Proceedings of the 1st international workshop on
open source data mining: frequent pattern mining implemen-
tations, pages 71–76. ACM, 2005.

[16] Samuel T. King and Peter M. Chen. Backtracking intrusions.
In Proceedings of the Nineteenth ACM Symposium on Operat-
ing Systems Principles, SOSP ’03, pages 223–236, New York,
NY, USA, 2003. ACM.

[17] Samuel T King, Zhuoqing Morley Mao, Dominic G Lucchetti,
and Peter M Chen. Enriching intrusion alerts through multi-
host causality. In NDSS, 2005.

[18] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High
accuracy attack provenance via binary-based execution parti-
tion. In NDSS. The Internet Society, 2013.

[19] Chunhyeok Lim, Shiyong Lu, A. Chebotko, and F. Fotouhi.
Opql: A first opm-level query language for scientific work-
flow provenance. In Services Computing (SCC), 2011 IEEE
International Conference, pages 136–143, July 2011.

[20] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E McGrath,
Jim Myers, and Patrick Paulson. The open provenance model:
An overview. In International Provenance and Annotation
Workshop, pages 323–326. Springer, 2008.

[21] Wojciech Wieczorek. Grammatical Inference: Algorithms,
Routines and Applications, volume 673. Springer, 2016.

[22] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou,
and Boon Thau Loo. Automated network repair with meta
provenance. In Proceedings of the 14th ACM Workshop on
Hot Topics in Networks, HotNets-XIV, pages 26:1–26:7, New
York, NY, USA, 2015. ACM.

[23] Wenchao Zhou, Qiong Fei, Arjun Narayan, Andreas Hae-
berlen, Boon Thau Loo, and Micah Sherr. Secure network
provenance. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles (SOSP), October 2011.

11. Appendix
11.1 proof DAGr Parsing is NP-Hard
Consider a grammar minimally defined by the production
rules:

:= T

:= F

T := v

T

T

F := v

F

F

T := v not F

F := v not T

T

F

F

:= v

v

v

or

T

T

F

:= v

v

v

or

T

T

T

:= v

v

v

or



• It is easy to see that this grammar accepts a DAG iff a
corresponding instance of 3SAT is satisfiable.

• An instance of 3SAT can be converted to a faithful DAG
in linear time. This DAG will be at most twice as large as
the 3SAT instance (to accommodate for the branching of
“v” nodes).

• If there is a polynomial algorithm for DAGr parsing then
it can be used to construct a polynomial algorithm that
solves 3SAT (we leave this for future work).

Therefore parsing DAGr in general is NP-hard. If the in-
degrees and outdegrees are bounded DAGr parsing is NP-
complete.


	Introduction
	Background
	Frequent Subgraph Mining
	Grammars and Automata
	Graph Grammars and Automata

	Simplifying Provenance DAGs
	Motivating Examples
	Diamond Dag
	Only Admins Delete

	Frequent Subgraph Mining (FSM)
	Example: Diamond Dag
	Example: Only Admins Delete? 
	What is FSM's role for provenance?

	DAGr
	DAGr Definition
	Example: Diamond DAG
	Example: Only Admins Delete!
	DAGr Parsing

	dDAGa
	dDAGa Definition
	dDAGa Parsing
	dDAGa Learning
	Preprocessing Function
	State merging
	Search


	Preliminary Results
	Provenance Results

	Future Work
	Conclusion
	Appendix
	proof DAGr Parsing is NP-Hard


