
Transparent Web Service Auditing via
Network Provenance Functions ∗

Adam Bates, Wajih Ul
Hassan

University of Illinois at
Urbana-Champaign

{batesa,whassan3}@illinois.edu

Kevin Butler, Alin Dobra,
Bradley Reaves
University of Florida

{butler,adobra,reaves}@ufl.edu

Patrick Cable, Thomas
Moyer, Nabil Schear
MIT Lincoln Laboratory

{cable,tmoyer,nabil}@ll.mit.edu

ABSTRACT
Detecting and explaining the nature of attacks in distributed web
services is often difficult – determining the nature of suspicious
activity requires following the trail of an attacker through a chain
of heterogeneous software components including load balancers,
proxies, worker nodes, and storage services. Unfortunately, exist-
ing forensic solutions cannot provide the necessary context to link
events across complex workflows, particularly in instances where
application layer semantics (e.g., SQL queries, RPCs) are needed
to understand the attack. In this work, we present a transparent
provenance-based approach for auditing web services through the
introduction of Network Provenance Functions (NPFs). NPFs are
a distributed architecture for capturing detailed data provenance for
web service components, leveraging the key insight that media-
tion of an application’s protocols can be used to infer its activities
without requiring invasive instrumentation or developer coopera-
tion. We design and implement NPF with consideration for the
complexity of modern cloud-based web services, and evaluate our
architecture against a variety of applications including DVDStore,
RUBiS, and WikiBench to show that our system imposes as little
as 9.3% average end-to-end overhead on connections for realistic
workloads. Finally, we consider several scenarios in which our sys-
tem can be used to concisely explain attacks. NPF thus enables the
hassle-free deployment of semantically rich provenance-based au-
diting for complex applications workflows in the Cloud.

Keywords
Security; Audit; Data Provenance

1. INTRODUCTION
An increasing fraction of web and computing services run on

cloud service platforms such as Amazon AWS, Google GCE, or

∗The Lincoln Laboratory portion of this work was sponsored by the
Assistant Secretary of Defense for Research & Engineering under
Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the author and are
not necessarily endorsed by the United States Government.

©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052640

.

Microsoft Azure [13]. These cloud service providers offer an ecosys-
tem that allows customers to rapidly build sophisticated applica-
tions by interconnecting myriad software artifacts including stor-
age, load balancers, and proxies. Many of these components are
published by third-party developers, or may even be administrated
as a proprietary service by another company. While dramatically
simplifying deployment, this approach makes it difficult to reason
holistically about the nature of suspicious events within an applica-
tion. Each component maintains its own audit log, or performs no
auditing at all. Moreover, due to the proprietary or third party na-
ture of these software artifacts, modifying a component to improve
its auditing capability may be out of the question.

Data provenance describes the history of the execution of a com-
puting system, providing detailed explanations as to how data ob-
jects were created and came to arrive at their present state. Re-
cently, provenance has been demonstrated to be of immense value
in performing forensic reconstruction of a chain of events following
an attack [3, 16, 28]. For example, provenance can indicate which
hosts, processes, files, and data have been affected during an attack,
and cue cleanup and recovery [24]. In addition, provenance is also
a valuable tool in benign circumstances where a context-sensitive
decision must be made about a data object or workflow.

While data provenance seems like a natural choice for address-
ing the challenges of web service auditing, there is not at this time a
domain-general solution for deploying provenance tracking in ex-
isting applications. While a variety of tools to aid in the design of
provenance-aware applications exist [12, 16, 18, 28], they are not
well-suited to large applications because they assume full developer
cooperation or access to source code. Provenance-aware operating
systems [5, 9, 10, 19, 21, 22] provide automated and non-intrusive
solution to capture provenance, but they suffer from semantic gap
problems [23] in that the information they collect is too coarse-
grained to satisfactorily explain application layer behaviors. For
example, while an unauthorized data access in a web service will
involve reading certain sensitive records from a database, the op-
erating system’s view of this same event will be a file access that
is indistinguishable from legitimate data accesses. For provenance-
based auditing to be viable in modern web services, what is re-
quired is a non-invasive approach to extracting semantic context to
application layer software components.

In this work, we introduce the notion of Network Provenance
Functions (NPFs), a proxy-based approach to deploying provenance-
based auditing that is general, low cost, and immediately deploy-
able. NPF transparently interposes on communication between dif-
ferent web service components to infer their activities. Our ap-
proach leverages a key insight that, while web services are grow-
ing increasingly sophisticated, their components are interconnected
based on a manageable number of publicly available communica-

MySQL

Squid

Proxies

Cassandra

MongoDB

Amazon EC2

Instances
Web

servers

Amazon EC2

Instances

user 1 user 2 user i

...

Application

servers

Elastic Load

Balancer

C
lo

u
d
 c

o
d

e
 s

e
rv

e
rs

Push

servers

Redis

Figure 1: Diagram of a Parse web service architecture (simpli-
fied). To accurately track provenance, it is necessary to track in-
dividual client requests from the network, through the server, to the
database, and back

tions protocols (e.g., HTTP, SQL, SOAP) and data marshaling stan-
dards (e.g., JSON, XML). For example, if a web server is commu-
nicating with a database, an NPF can intercept and interpret the
communication to infer the relationship between remote web re-
quests and database accesses. NPF thus provides a holistic view of
system activity in large, complex computing workflows.

Our contributions can be summarized as follows:

• Network Provenance Functions: We present the design of NPF,
and explore the space of auditing challenges that can be solved
via our approach. NPF is comprised of an explicit forward proxy
server, protocol parsers, and a data model for representing dif-
ferent forms inter-component communication.

• Implementation & Evaluation: We implement NPF and bench-
mark our system to demonstrate that NPF imposes as little as
9.3% overhead on web requests, which can be easily provisioned
for in a cloud-based environment, and can be queried to deter-
mine the provenance of individual messages in just 1.23 ms.

• Usage Demonstrations: Through a series of case studies, we
demonstrate how NPF can be employed to reasoning about Internet-
based attacks. For instance, we demonstrate that our system can
be used as a means of explaining SQLi-based data exfiltration,
one of the most widespread threats to the Internet today.

2. MOTIVATION
Cloud Computing has revolutionized the way web services are

designed and deployed today. With the pay-as-you-go and provision-
as-you-go model, developers can deploy their web services in clouds
such as Amazon Web Services (AWS) with greater scalability and
flexibility. However, this increasing intricacy also complicates the
task of diagnosing anomalous behavior, be it malicious activity or
benign misconfigurations. Unfortunately, the primary focus of ex-
isting security solutions is to provide monitoring at the network
boundaries (e.g., firewalls, network IDS), leaving them unfit to
monitor violations that occur within the web service interior.

To ground our discussion of modern web services, we now de-
scribe the Parse service as an exemplar. Parse is a Facebook-owned
business that provides cloud-based backend services to over 180,000

mobile applications. They provide a description of their architec-
ture as part a testimonial on the AWS website.1 A simplified ex-
ample of Parse’s virtual architecture is shown in Figure 1. Parse
simultaneously serves two stakeholders: their clients (app devel-
opers), and their clients’ users. When a user issues a request to a
Parse-based app, the request passes through a load balancer, web
server, and application server, which prompts queries to storage
backends such as MySQL and MongoDB, and may also trigger ad-
ditional messages be sent to a variety of push servers. Simultane-
ously, Parse clients use a cloud-based environment for hosting and
developing their code, which can also interact with the main ap-
plication servers (e.g., app updates) and is performance-optimized
through use of a code proxy.

Consider a scenario in which a SQL injection (SQLi) based data
exfiltration attack is launched on a Parse-based application: 1) the
attacker sends a web request containing a malcrafted application in-
put, 2) the request is directed to a web server by the load balancer,
3) the web server passes the malicious payload to an application
server, 4) the application fails to properly sanitize the adversary-
controlled input, leading to an unauthorized query “SELECT * FROM

CUSTOMERS” which is then 5) returned to the attacker in the appli-
cation’s response. Later, after being the subject of an embarrassing
news article about the data leak, an administrator wishes to under-
stand how this attack took place and who was responsible.

A complete causal reconstruction of the attack is comprised of a)
the remote source that initiated the attack, b) the worker instances
that interacted with attacker input, and c) the data accessed in stor-
age. Unfortunately, these vital pieces of information are spread out
across the workflow: the source of the attack is obscured after the
passing through the web server component, the instances that han-
dled attacker input are determined dynamically by the load balancer
and by a pool of database connections, and the unauthorized data
access is not salient until after the malcrafted input passes through
the application worker. As a result, a holistic explanation of such
an attack eludes modern web service deployments. Network secu-
rity monitoring at the boundaries of the architecture is oblivious to
the attack as the violation occurs at the application layer, and those
components that generate their own audit logs lack the means to
fuse this information into a global view of the system’s execution.

2.1 Provenance-based solutions
Our work is part of a growing body of literature that explores

the use of data provenance to address critical security challenges.
Provenance has been employed to detect compromised nodes in
data centers [3, 8, 24, 28], explain and prevent data exfiltration [5,
14], and enrich access controls [4, 20]. Due to space limitations,
we are unable to provide a full background on data provenance; a
number of example provenance graphs are included in Section 6.
Below, we consider the shortcomings of past approaches to prove-
nance collection within the context of this domain.

While past work provides partial solutions to the web application
problem, significant challenges remain to deploying provenance in
this environment [2]. By deploying a provenance-aware operating
system such as ProTracer [17] or LPM [5], it would be possible to
use a single capture agent to observe all activities. Unfortunately,
system layer provenance will be of little value alone due to the se-
mantic gap between the OS and the application layer. Database
primitives such as tables, records, and columns would not be iden-
tifiable in the provenance record. Moreover, the inability to dis-
tinguish between web requests at the server would create a depen-

1See https://aws.amazon.com/solutions/
case-studies/parse/

https://aws.amazon.com/solutions/case-studies/parse/
https://aws.amazon.com/solutions/case-studies/parse/

dency explosion problem, leading to the false conclusion that each
server response was dependent on all previous client requests.

An alternative approach would be to deploy provenance-aware
applications. Although provenance libraries exist to simplify the
manual instrumentation of source code [18], this approach requires
additional capital and domain-specific knowledge that is unlikely
to be available to most web developers. Furthermore, the devel-
opers may be forced to instrument not only their own code, but
also many of its dependencies, including the web server, runtime
framework, database service, and 3rd party libraries that they use.
Tools such as BEEP can be used to partially automate the creation
of provenance-aware applications [16]. Unfortunately, while BEEP
addresses the dependency explosion problem, a semantic gap still
exists because BEEP provenance is extracted through the use of
system layer audit logs. To observe the database, we could turn to
dedicated provenance-aware database management services such
as Trio [25], DBNotes [7], and ORCHESTRA [15]. However, this
solution requires re-architecting the web service, and does not pro-
vide linkability between the service and the database. Furthermore,
while the means of deploying provenance capabilities in databases
have been known for over a decade, there has been little to no adop-
tion by mainstream database services, indicating that database de-
velopers are uninterested in supporting this functionality.

These proposed approaches suffer from two fundamental limita-
tions: (1) they cannot observe information flows beyond the bound-
aries of their own operation; and (2) they require significant changes
to the OS and applications. With this in mind, the broad challenge
we consider is the development of a minimally invasive and cost-
effective means of creating provenance-aware web services. Our
solution, NPF, provides provenance-based auditing without requir-
ing modification to existing web applications and databases.

3. DESIGN

3.1 Threat Model & Assumptions
The attack surface we consider in this work is that of a typical

cloud-based web service. By connecting to the web service’s exter-
nal listening ports the attacker may attempt a variety of misdeeds
on the system. The attacker may attempt to exfiltrate data from the
web application through iterative command injection (e.g., SQLi)
attacks. A successful exfiltration attack will involve repeated com-
mand injections as the attacker attempts to discover the location of
valuable data. The attacker may also attempt to use command in-
jection to inject spurious data into the database for the purposes of
privilege escalation or cross-site scripting. Alternately, the adver-
sary’s target may not be the web application but the system itself.
The attacker may be targeting the web server in order to compro-
mise other services on the host or to move laterally to other hosts
on the network [27].

We make the following assumptions about the security of each
web service component inside the cloud. We conservatively assume
that the components of the web service are all subject to compro-
mise. These components may begin to lie about their actions on the
system at any time, but we assume that at least one record of the
attacker’s access attempt is recorded prior to compromise.

3.2 Design Goals

G1 Complete. Our system must offer a complete description of in-
dividual requests as they pass through the web service workflow.
The record must remain complete in the presence of unexpected
events triggered by attacker behavior, such as command injection
attacks or binary exploitation.

G2 Integrated. Our system must combine provenance from differ-
ent software components in a salient manner that provides a co-
herent explanation of application activity to the administrator.
Provenance generated by different audit mechanisms must share
a common namespace, and each audit mechanism must be able
to accurately reference the activities of other agents.

G3 Widely Applicable. To further advocate for the deployability of
provenance-aware applications, our efforts in the development
of the system should not be limited to the benefit of a particular
application, backend component, or architecture. Instead, our
system should be immediately compatible with a broad number
of existing applications.

3.3 Network Provenance Functions
A fundamental design consideration in our system was the man-

ner in which our auditing mechanism would observe communica-
tion between system components. One possibility would be to in-
strument the components to add auditing capabilities. However,
this would have made our solution application-specific, and more
generally would be at odds with the rapid deployment model of
modern web services. Instead, we chose to create the NPF audit-
ing mechanism in the form of explicit forward proxies that monitor
on communications between system components. A key insight
to this approach is that, while web services are growing increas-
ingly sophisticated, their components are interconnected based on
a manageable number of publicly available communications proto-
cols (e.g., HTTP, SQL, SOAP) and data marshaling standards (e.g.,
JSON, XML). By parsing and interpreting these communications,
it is possible to infer the internal state of the software component,
without requiring any modifications to the component itself. Be-
low, we describe the two primary components of NPF– protocol
parsing §3.3.1 and audit event generation §3.3.2.

3.3.1 Protocol Parsers
After proxying the inter-component traffic, we make use of pro-

tocol grammars in order to infer the components’ actions and sub-
sequently generate provenance records. Each grammar accepts as
input a protocol message and outputs a parse tree representing the
syntactic structure of the message. Following construction of the
parse tree, each NPF protocol parser defines an algorithm that tra-
verses the parse tree and extracts the semantically-relevant pieces
of a protocol message. Below, we consider two common web ser-
vice protocols – Structured Query Language (SQL) and Simple Ob-
ject Access Protocol (SOAP).

Structured Query Language (SQL): As an exemplar database
query language, we focus on SQL due to its widespread use. After
specifying a SQL grammar, we obtain a SQL query parse tree such
as the one shown in Figure 2. This tree is a SELECT statement that
contains a FROM clause (required) and a WHERE clause, which is
one of several optional SQL clauses. The goal of our SQL parser
is then to extract two important classes of information from each
query – the access type and the data objects. The access type is de-
termined by the root node of the parse tree (e.g., select_stmt.
The data objects are contained in the leaves of the parse tree; how-
ever, the canonical name for most data objects contain both a table
and a column reference, which are found in different clauses of
the statement. To address this, we defined a synthesized attribute
to aggregate this information at the root of the tree. As the tree
is constructed, the attribute tracks the columns used in the current
subtree and the tables used in the FROM clause. When the parse
tree is complete, the synthesized attribute is inspected to determine
the appropriate prefix for each column given the tables used in the
FROM clause.

function function

MAXCONCAT

NAME NAME NAME

“employees”“lastname”“firstname”“id” 1,000,000

select_expr NAME

NAME

select_stmt

select_expr_list from_stmt

select_expr

expr

where_stmt

expr

COMPARISON

NUMBER

“salary”

Figure 2: A SQL parse tree for the statement “SELECT
employee_id, CONCAT(firstname, lastname) FROM

employees WHERE MAX(salary) > 1,000,000”.

In non-trivial SQL statements, a variety of challenges arise in
extracting this data. We came across a number of such challenges
while designing and implementing NPF. We describe our solutions
to each problem below:

• Parsing Challenge #1: Wildcards. Through use of the wildcard
character, SQL statements are able to reference all columns in a
table without explicitly naming them. To address this, we pro-
vide the NPF with a schema description that allows it to translate
the wildcard character into the associated columns for the given
table. In our implementation, we obtain the schema through use
of the mysqldump command.

• Parsing Challenge #2: Aliases. Any value in a SQL statement
can be aliased to another name. The challenge in resolving aliases
is that an alias may be referenced in one clause of the query,
but defined in another. To address this problem, we extended
our synthesized attribute to track references and definitions of
aliases. At the top level of the parse tree, the list of referenced
aliases are then resolved to their true table and column names.
In effect, this means that NPF unaliases named objects during
parsing, ensuring that the extracted provenance is unobfuscated.

• Parsing Challenge #3: Nested Queries. An additional obsta-
cle we faced in the design of our grammar was that of nested
queries. In SQL, full statements can be indefinitely nested within
one another. For example, “SELECT A FROM (SELECT id AS

A FROM employees)” is a valid statement. Nested queries can
be used to further obfuscate the true origin of a data object. Our
solution to this is to modify the synthesized attribute routines
described above. At the root of each subquery in the parse tree,
objects in the subquery are unaliased, and the named and refer-
enced objects used by the subquery are transferred to the parent
query. Additionally, the alias mapping is passed to the parent
query, allowing NPF to unnest queries as the statement is parsed.

Simple Object Access Protocol (SOAP): Remote procedure call
frameworks allow one application to invoke functions in other ap-
plications. As a canonical example, we consider the SOAP specifi-
cation. SOAP encodes the requests and responses in XML, and can
be used over a variety of transports, including HTTP, SMTP, and
standard sockets. A SOAP request includes the method name to be
invoked on the remote system and the parameters for the method.
The response includes the result of the method invocation or an er-
ror message. For each request response pair, we capture the method

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetEndorsingBoarder xmlns:m="http://namespaces.snowboard-info.com">
<manufacturer>K2</manufacturer>
<model>Fatbob</model>

</m:GetEndorsingBoarder>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3: Example SOAP request from https://www.w3.
org/2001/03/14-annotated-WSDL-examples.html

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetEndorsingBoarderResponse xmlns:m="http://namespaces.snowboard-info.

com">
<endorsingBoarder>Chris Englesmann</endorsingBoarder>

</m:GetEndorsingBoarderResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 4: Example SOAP response from https://www.w3.
org/2001/03/14-annotated-WSDL-examples.html

name, the input arguments, and the response. Figure 3 shows an
example request invoking the GetEndorsingBoarder method
with two arguments, manufacturer and model. The response
in Figure 4 is another SOAP envelope containing endorsing-
Boarder key with value “Chris Englesmann”.

• Parsing Challenge #4: The SOAP specification does not define
the content of the message body beyond requiring that the body
be valid XML. This makes it difficult to determine what the
method name and arguments are for a given message. For ap-
plication developers, a description of the services are provided
via a WSDL2 file, an XML file that defines valid methods and
the required arguments for each method. We provide the SOAP
NPF with the WSDL for the host, allowing the parser to extract
valid method names and what parameters each method expects.

3.3.2 Audit Event Generation
Below, we describe how NPF generates audit events across for

database accesses (e.g., SQL) and remote procedure invocations
(e.g., SOAP). The event streams from different NPFs are received
at the Provenance Recorder and then processed into provenance
graphs of system execution. As the process of graph generation is
based on open specifications [26], for brevity we have omitted a de-
scription of this process. Example provenance graphs can be found
in Section 6.

Database Accesses

• Explicitly Accessed Data: We refer to the named objects refer-
enced in the primary clause of the query as accessed data. These
are the objects that will be returned by the database in its re-
sponse to the query. NPF generates a Used provenance rela-
tion for each piece of accessed data in SELECT, SHOW, and
DESCRIBE clauses; for INSERT and UPDATE clauses, Was-
GeneratedBy relations are generated for each data access.
The accessed data in Figure 2, shaded in green, are the em-
ployee_id, firstname, and lastname columns, and the employees
table.

• Implicitly Accessed Data: Named objects that appear in sub-
sequent clauses of the query are not explicitly returned by the
database, but nonetheless inform the response message. Con-
sider the implicit data access shaded in yellow in Figure 2 – while

2Web Services Description Language

https://www.w3.org/2001/03/14-annotated-WSDL-examples.html
https://www.w3.org/2001/03/14-annotated-WSDL-examples.html
https://www.w3.org/2001/03/14-annotated-WSDL-examples.html
https://www.w3.org/2001/03/14-annotated-WSDL-examples.html

 Used Used Used

WasGeneratedBy

WasGeneratedBy

m:GetEndorsingBoarder

endorsingBoarder:Chris Englesmann

X.X.X.X

SOAP Request manufacturer:K2 model:FatBob

Figure 5: An example of a provenance graph for a SOAP response,
showing the method, input arguments, and the requesting client
X.X.X.X.

employee salaries are not returned in the query, the response
implicitly informs the querier of which employees salaries are
greater than $1,000,000. Referenced data therefore represents
a dangerous side channel for information leakage. However, in
some environments, it may be unnecessarily conservative to treat
all referenced data as accessed data. To account for this, we in-
troduce a USED_IMPLICIT event to describe referenced data.

• Access of Ephemeral Data: Query expressions also include non-
persistent data objects, such as numbers and string literals. Ephemeral
data can manipulate the records and values returned by a query,
but not the columns accessed and referenced. We choose to ig-
nore ephemeral data for the case of audit event generation, such
as the $1,000,000 constant shaded in red in Figure 2.

Remote Procedure Invocations

• Methods: Unlike the SQL NPF, where the database manage-
ment server activity is implicit, the SOAP method defines an
Activity. The method name is extracted from the SOAP mes-
sage using the WSDL to determine the validity of the method
name. Valid activities are reported to the provenance recorder,
along with the inputs and outputs of the method.

• Inputs/Outputs: One challenge associated with parsing SOAP
messages is determining the arguments sent to the RPC end-
point, and the response returned to the client that invoked the
method. The WSDL provided by the end-point is used by the
SOAP NPF to determine the names of the method arguments
and responses. The method arguments are extracted from the
SOAP message, and each input argument is associated with the
RPC activity with a Used provenance relation. In Figure 3,
the manufacturer and model data objects are linked to the
GetEndorsingBoarder activity. For responses, a
wasGeneratedBy provenance relation is created for each ele-
ment of the response. In our example, the endorsingBoarder
response element is linked to the method GetEndorsing-
Boarder. Figure 5 shows the provenance graph that is gen-
erated from the request-response pair from Figures 3 and 4.

3.4 Supplemental Tracking Techniques
In addition to NPF, we take note of two important classes of audit

information that require additional context in order to track. First,
in the event that a software component such as the web server is
compromised, NPF alone is insufficient to track attacker actions.
This is because the attacker will no longer be limited to the work-
flow activities, but will instead be able to take any action on the
system with the privileges of the web server. To ensure the ability
to track attacker actions in the presence of system layer attacks, we
run our software components on top of provenance-aware operating

Provenance Recorder
Server Attack Graph

Query APITrash Collect

1

2

3

4

5

6

7

Provenance Flow Data Flow

Provenance Monitor

Database Server

Unmodified

Provenance Monitor

Web Server

Execution
Partition

3

Provenance Monitor

Application
Worker

Unmodified

Network Prov.
Function

Proxy Server

Protocol Parser

Prov. Extractor

0

2

Figure 6: Diagram of a web service deployment with NPF. The
introduced components are shaded in orange. No changes are re-
quired to the Database Engine or Web Application; instead, prove-
nance is generated by interposing on inter-component communi-
cations, with supplemental audit records provided by system layer
provenance monitors. A small change to the Web Server is required
to partition incoming requests.

systems. We make use of a system layer provenance monitor such
as Linux Provenance Modules [5] or SPADE [10] Second, at points
in the workflow where multiple client connections are multiplexed
on a single worker instance (e.g., web server), NPF encounters a de-
pendency explosion problem in which the inputs and outputs from
the component cannot be disambiguated, leading to overly conser-
vative and false dependency assumptions. To address this, we make
use of execution partitioning techniques as introduced in [16]. Both
LPM and Execution Partitioning leads to the emission of additional
provenance events that are aggregated at the recorder and synthe-
sized into the attack graph.

We note that the use of these techniques does not impact the
adoptability or generality of our system. LPM is implemented for
the Red Had Linux kernel and can be packaged as an EC2 image
in order to avoid deployment costs. Execution Partitioning will in-
volve a minimal modification to the web server that we discuss in
Section 4. However, the vast majority of web services are based on
just a few servers such as Apache and Nginx, making instrumen-
tation a one-time application-agnostic effort. Our architecture thus
maintains its generality in spite of these extensions.

3.5 Deployment
We now demonstrate a possible deployment scenario for NPF

and step through how an individual web request is processed. A
diagram of a simple NPF deployment is shown Figure 6 featuring
a Web Server, Application Worker instance, and Database Server.
The original data flow of the web service is marked by red arrows,
while the stream of provenance events is marked by blue dashed
lines. NPF introduces several components (shaded in orange), but
requires no modification to the application or database manage-
ment system. The added components are as follows: a small and
re-usable modification to the web server that performs execution
partitioning on incoming requests, an NPF mediating communica-
tion between the application worker and the database, and a system
layer provenance monitor. All of these components generate prove-
nance events that are transmitted to a central provenance recorder
described in Section 4.

The workflow for provenance collection is as follows: (1) a re-
mote host makes a request to the Web Application; (2) a small
modification to the web server notifies the Provenance Recorder
that a new autonomous unit of work has begun; (3) NPF proxies
and parses a SQL query issued to the Database Server; (4) NPF
observes the Database Server response and (5) reports new prove-

nance events to the Provenance Recorder (6) after the Web Appli-
cations transmits a response to the remote host, (7) the Web Server
notifies the Provenance Recorder that the unit of work has ended;
(0) throughout this process, the system-layer provenance monitor
generates provenance for all activities that are not being explicitly
observed by NPF.

3.6 Security Analysis
Our arguments for satisfying the Design Goals are as follows:

Complete (G1). NPF is able to differentiate between individual
web requests through a minimal modification to the Web Server
that performs execution partitioning. Transactions between indi-
vidual components are observed by the NPF proxy. In the event
that the server is compromised, NPF can continue to track the ac-
tions of the attacker on the system through use of the provenance-
aware kernel, whose trusted computing base can be protected using
SELinux enforcement [5].

Integrated (G2). In NPF, we integrate provenance from differ-
ent protocols through tracking host and process ids (pid). In our
implementation, the server components are configured to run in
pre-fork mode in which all workers receive a unique pid. When
a request is proxied by NPF, the sending component is identified at
the Provenance Recorder by matching the network context (i.e., IP
Addr, Port) between the component and the NPF proxy. The host
and process id’s are then linked to all provenance events reported
on their actions. To integrate NPF provenance with system-layer
provenance, we introduce a pid_to_provenance syscall that
accepts a pid and returns the universally unique identifier associ-
ated with the provenance of the process’ fork in the kernel. Thus,
all layers share a common language to describe an activity.

Widely Applicable (G3). We confirmed that our NPF imple-
mentation is compatible with the Apache 2 and Tomcat (via mod_jk)
Web Servers and a variety of web applications and utilities includ-
ing MediaWiki3 (PHP-based), UnixODBC4, and a suite of Tomcat-
based applications that were released with the AMNESIA [11] eval-
uation testbed5. While in practice SQL comes in many different
flavors and varies by database management system, we found that
our method of identifying data objects was simple enough to work
on a variety of SQL platforms including MySQL and PostGreSQL.

4. IMPLEMENTATION
Network Provenance Functions: We have implemented NPF in

C as a multithreaded TCP proxy server. The SQL Protocol Parser
uses Bison and extends a publicly available SQL grammar6 with
a synthesized attribute that identifies all accessed data objects as
described in §3.3.1. After parsing the query, NPF inspects the list
of data objects accessed. It then creates a provenance event for each
object, which is a tuple of the form < pid, relationship, column,
table >. Relationship is one of the several relationships specified
in Section 3.3, and are also consistent with the Open Provenance
Model (OPM)7 While we have focused on using NPF with SQL
and SOAP, NPF for SQL protocol but our system can be extended
to any web service communication such as HTTP or REST APIs
by defining parsers for those protocols.

3 Available at https://www.mediawiki.org.
4 Available at http://www.unixodbc.org.
5 Available at http://www-bcf.usc.edu/~halfond/
testbed.html.
6 Available at https://github.com/hoterran/
sqlparser.
7 See http://openprovenance.org/

Benchmark Total Database Average Time (ms) Percent
Queries Size (GB) w/o NPF with NPF Overhead

Dell DVD Store 6451 10 10.7 11.7 9.3
RUBiS 6430 1 6.5 7.2 11.2
WikiBench 6581 3 6.3 7.0 11.6

Table 1: Performance of NPF under realistic workloads.

Provenance Recorder: The Provenance Recorder is responsible
for aggregating provenance from the different NPFs and represent-
ing it in an query-efficient in-memory graph. We implemented the
Recorder in C++ using the SNAP graph library. Different prove-
nance events are handled as described in Section 3.3; generally
speaking, when the Recorder receives a new event it first checks to
see if any of the involved objects are already present in the graph,
creates them if they are not, and then adds a new relationship be-
tween the objects. Visual examples of how provenance graphs were
represented by the recorder follow in Section 6.

Provenance-Enhanced Web Server: We instrumented Apache2
(version 2.2.31) to perform execution partitioning within the the
ap_invoke_handler function. We selected this layer of the server
stack because it after the various error and security filters performed
by the server, ensuring that we do not generate provenance for re-
quests that are later rejected, but before file-specific handler mod-
ules, providing a single point of mediation for monitoring both
static and dynamic content. We first configured the server to run
in pre-forked mode.8 We then included an additional header file
in the Apache 2 source to handle the generation and transmission
of provenance events. Finally, we inserting two function calls in
server/config.c, before and after the call to ap_run_handler.
Before ap_run_handler, the npf_unit_start function gener-
ates a UUID to associate with the unit of work, then transmits
the message to the Provenance Recorder that contains the UUID,
the remote_addr struct, and the process id of the Apache worker.
After ap_run_handler, the npf_unit_end function transmits a
message to the Provenance Recorder that notifies the recorder that
the unit of work associated with UUID has ended, then frees the
UUID character array. This approach to execution partitioning is
general enough to work with any other C-based server implemen-
tation such as Nginx and sshd.

System-Layer Provenance Monitor: To ensure the ability to
track attacker actions after a binary server exploit, we provision all
software components on top of a provenance-aware operating sys-
tem. We made use of the Linux Provenance Modules project for
our provenance-aware kernel. We configured LPM to make use of
the Hi-Fi module [21], and deployed the system as described in [5].

5. PERFORMANCE EVALUATION
We conducted our evaluation on a machine with two 2.4 GHz

Quad-Core Intel Xeon processors and 12 GB RAM. VMWare Fu-
sion VMs running CentOS 6.5. VMs were provisioned with VMWare
Fusion using common deployment model of 4GB RAM and 2 vC-
PUs and ran CentOS 6.5. Due to space limitations, we include tests
only for the SQL NPF below.

End-to-End Delay One of the vital measures of NPF’s perfor-
mance is the end to end delay it imposes on web requests. We
represented realistic workloads to evaluate NPF using three bench-
mark tests: the Dell DVD Store e-commerce site,9 RUBiS auction

8 See http://httpd.apache.org/docs/2.2/mod/
prefork.html.
9Available at http://linux.dell.com/dvdstore/

https://www.mediawiki.org
http://www.unixodbc.org
http://www-bcf.usc.edu/~halfond/testbed.html
http://www-bcf.usc.edu/~halfond/testbed.html
https://github.com/hoterran/sqlparser
https://github.com/hoterran/sqlparser
http://openprovenance.org/
http://httpd.apache.org/docs/2.2/mod/prefork.html
http://httpd.apache.org/docs/2.2/mod/prefork.html
http://linux.dell.com/dvdstore/

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

C
u
m

u
la

ti
v
e
 D

e
n
si

ty

Response Time (Milliseconds)

Unit Start
Unit End

Parse Query
Transmit Prov

Figure 7: CDFs for NPF microbenchmarks during DVDStore test.

site,10 and the Mediawiki-based WikiBench.11 DVDStore was run
using a MySQL that was populated with 10 GB of content using
the DVDStore data generation programs. RUBiS was run using a
database acquired from [6] containing 9 tables containing 33,721
items for sale in 20 categories, and traffic was generated using the
RUBiS client emulator. Mediawiki was populated using a trace file
from September 27th12 and traffic was generated by issuing cURL
requests for random wiki pages.

Each of the above tests was run twice, both with and without NPF
interposition. The results are shown in Table 1 When averaged over
thousands of connections in each test, NPF imposed between 0.7
and 1 ms overhead per connection, which represents 9.3% – 11.6%
overhead due to the high throughput of the applications. Overhead
did not increase with the size of the database. While 10% overhead
is non-negligible, we conclude that NPF’s performance falls within
acceptable bounds for real applications.

Microbenchmarks To determine the cause of this overhead, we
instrumented NPF to measure the average time spent on each in-
dividual step during experimentation. Specifically, we measured
the average time spent in the SQL parsing step, transmitting prove-
nance from NPF to the Provenance Recorder, transmitting unit_start
and unit_stop to the Provenance Recorder. Figure 7 shows the
associated cumulative density functions for each measured step dur-
ing DVDStore benchmark. The various SQL queries generated by
DVDStore could be parsed and have their provenance extracted in
an average of 0.053 ms. The primary source of delay in our NPF
system is due to inter-process communication; transmitting prove-
nance events required 0.318 ms on average, and 7.624 ms in the
worst case. unit_start and unit_stop messages, which are
smaller than messages from the NPF, transmitted in an average
of 0.137 ms and 0.172 ms respectively. Steps that required com-
munication with the Provenance Recorder experienced high vari-
ance, indicating processing delays at the Recorder that could be
addressed to improve performance. As our provenance recorder
implementation was single-threaded, it is likely that delays could
be dramatically reduced through creating a multi-threaded version
of the recorder.

Provenance Query Performance A final performance consid-
eration for NPF is the speed with which provenance data can be
queried by an administrator. The ability to quickly access relevant
audit data is of critical importance when responding to live secu-
rity incidents. In this test, we then issued a series of queries to
the Provenance Recorder using the Query API. We repeated the
DVDStore benchmark, and requested the ancestry of each server
response to the DVDStore Client immediately after the server trans-

10Available at http://rubis.ow2.org/
11Available at http://www.wikibench.eu/
12Available at https://archive.org/details/
enwiki-20080103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

C
um

ul
at

iv
e

D
en

si
ty

Response Time (Milliseconds)

Figure 8: CDF of Provenance Recorder’s query response time.

 Used Used Used Used_
Implicit

 Used_
Implicit Used

 WasDerivedFrom WasDerivedFrom WasDerivedFrom WasDerivedFrom WasDerivedFrom

WasGeneratedBy

WasGeneratedBy

httpd worker 2021

X.X.X.X

name

customers

card_number card_expires

orders

id id

HTTP Response

HTTP Request

Figure 9: The provenance of a successful SQL injection attack on
an eCommerce site launched by remote host X.X.X.X. The attack
accesses sensitive data from the customers and orders tables.

mitted a unit_end message, producing provenance graphs similar
to Figure 9 The results are shown in Figure 8. The average re-
sponse time by the Provenance Recorder was just 1.23 ms. We mi-
crobenchmarked this result as well, and found that on average 1.17
ms of this delay was due to IPC, while just 0.5 ms was required to
generate the provenance ancestry. In the worst case, the query took
7 ms to respond, but this was also due to IPC delays and not to the
cost of graph traversal. These results indicate that our implementa-
tion of NPF is already able to quickly respond to forensic queries,
and is so fast that it may even be used as the basis for automated
provenance-based enforcement mechanisms.

6. CASE STUDIES
In this section, we consider several attack scenarios in which

NPF can be used to detect and explain Internet-based attacks.

6.1 Scenario #1: SQL Injection
One of the primary motivations in the design of NPF was to be

able to track common web application vulnerabilities such as SQL
Injection (SQLi). SQLi enable data exfiltration attacks on large
company customer databases and are thus one of the most preva-
lent threats on the Internet today. However, since a full explana-
tion of SQLi involves a composition of network context, bypassed
application logic, and database accesses, the ability to succinctly
explain SQLi attack paths eludes modern audit system. In this sce-
nario, we simulated a successful SQLi attack by using a toy PHP
application on Apache 2 that relayed SQL queries to MySQL over
POST requests; this behavior is similar to an attack in which saniti-
zation checks within the web application are successfully bypassed,
leading to a valid (but malicious) SQL query

A condensed version of the attack graph recorded by NPF is
shown in Figure 9. Here, we see the provenance of a message de-
rived from SQL data from the customers and orders tables. Crit-
icially, the query obfuscations that are commonly associated with
SQLi are not present in the provenance graph. This is because such

http://rubis.ow2.org/
http://www.wikibench.eu/
https://archive.org/details/enwiki-20080103
https://archive.org/details/enwiki-20080103

WasGeneratedBy

 Used

 WasGeneratedBy

 Used Used WasTriggeredBy

 WasTriggeredBy

 WasTriggeredBy

 WasTriggeredBy

 WasGeneratedBy

 WasTriggeredBy

 WasTriggeredBy

X.X.X.X

HTTP Request

httpd worker 4435

 uploads/rsh.jpg

 identify uploads/rsh.jpg

 libMagickCore.so.2.0.0

 sh -c curl -s -k -o /tmp/magic

 bash -i /dev/tcp/X.X.X.X/9999

 vi htdocs/reverse-shell.php

 reverse-shell.php

 curl -s -k -o /tmp/magick-XX8MNK2f http

 sh -c identify uploads/rsh.jpg

Figure 10: The provenance of an ImageTragick exploit. The at-
tacker uploads a malicious image file rsh.jpg that opens a remote
shell back to the attackers host. The attacker gains persistence
on the machine by placing a reverse shell in the server’s htdocs
folder.

obfuscations are designed to bypass input sanitization checks that
are performed by the web application. When a malicious input is
able to successfully pass through these checks, the output is a well-
formed SQL query. As a result, NPF is optimally positioned to
understand the intent of the attacker. Moreover, while our motivat-
ing usage scenario has been on forensic (i.e., offline) investigation,
the information collected by NPF could also be used to perform real
time notification and incident response. For example, an adminis-
trator could specify that credit card numbers are only permitted to
flow to remote IP addresses associated with the Visa Payment Net-
work, then perform realtime filtering of HTTP responses using the
provenance captured by NPF.

6.2 Scenario #2: ImageTragick Exploit
To demonstrate the combined capabilities of NPF and system

layer monitoring when deployed in tandem, we developed a web
application exploit based on the recently discovered vulnerabili-
ties in the ImageMagick library.13 Our vulnerable web application
made use of a PHP script that used the ImageMagick to test whether
an uploaded file was an image. The attack payload was a jpg com-
prised of 4 lines of text including the following command:

image over 0,0 0,0 ’https://127.0.0.1/x.php?x=‘bash -i
>\& /dev/tcp/X.X.X.X/9999 0>\&1‘’

This code is executed by the server when the image is processed
by the ‘identify‘ ImageMagick tool, causing a bash shell to be
linked to the attackers remote host on port 9999. The provenance
of these activities on the server side is shown in Figure 10. With-
out NPF, the operating system provenance for these events would
be difficult to interpret. Dependency explosion would make it hard
to identify which remote host was able to invoke a shell command.
NPF signals the start of a unit of work before the request is handled,

13See https://imagetragick.com/

 WasControlledBy

 WasTriggeredBy

 WasTriggeredBy WasTriggeredBy WasTriggeredBy WasTriggeredBy

 httpd worker 37092

 X.X.X.X

 sh -c uname -a; w; id; /bin/sh -i

 uname -a w id /bin/sh -i

Figure 11: The union of NPF and system layer provenance can
track a remote shell invocation launched by remote host X.X.X.X.
The provenance of file and packet manipulations have been pruned
for clarity. NPF assists the forensic process by identifying the re-
mote host and unit of work responsible for the exploit.

which removes from suspicion all sessions that occurred prior to
the compromise. Following the compromise, LPM can be securely
configured such that the attackers actions on the system can con-
tinue to be monitored [5].

6.3 Scenario #3: Reverse Shell Invocation
As a final example, we monitor the attacker’s subsequent vis-

its to the web server through invoking the reverse-shell.php

script. To create realistic attack provenance, we made use of a pub-
licly available php-reverse-shell application.14 Reverse shells were
also an aspect of the Apache 2 Darkleech attack [1]. Figure 11
shows the resulting provenance graph. Here, we can see that an
httpd worker with pid 37092 is handling a request from remote
host X.X.X.X. Unexpectedly, the worker issues a series of con-
spicuous system commands that collect information regarding the
name of the machine (uname), the identity of the active user (id)
which in this case is a daemon, and the activities of other users
that are currently logged in (w). The worker then drops to shell.
This information would serve as an invaluable explanation as to the
attackers intent once their intrusion had been discovered.

7. CONCLUSION
In spite of a pressing need for ways to explain and mitigate web

application vulnerabilities, web services have received little atten-
tion as candidates for provenance-based auditing capabilities. In
this work, we presented NPF, a system for creating provenance-
aware web applications. Our system can be deployed without re-
quiring any changes to the web application, yet provides rich, con-
cise audit trails for web service workflows. We demonstrated NPF’s
ability to explain SQL injection attacks, and to aid in the track-
ing of system layer attacks against the web server. In evaluation,
we discovered that our system imposes as little as 9% overhead on
web requests. Thus, NPF demonstrates a deployment strategy for
provenance-based auditing not only in web services, but for many
complex, heterogeneous application workflows.

Acknowledgements
We would like to Mugdha Kumar for her assistance with the ex-
tension of Linux Provenance Modules. This work is supported in
part by the US National Science Foundation under grant numbers
CNS-1540216, and CNS-1540217.

Availability
Our code is available at http://linuxprovenance.org.

14Available at http://pentestmonkey.net/tools/
web-shells/php-reverse-shell.

http://linuxprovenance.org
http://pentestmonkey.net/tools/web-shells/php-reverse-shell
http://pentestmonkey.net/tools/web-shells/php-reverse-shell

8. REFERENCES
[1] Darkleech Apache Attacks Intensify. http://www.

darkreading.com/attacks-and-breaches/
darkleech-apache-attacks-intensify/d/
d-id/1109760?

[2] I. M. Abbadi, J. Lyle, et al. Challenges for provenance in
cloud computing. In TaPP, 2011.

[3] A. Bates, K. Butler, A. Haeberlen, M. Sherr, and W. Zhou.
Let SDN Be Your Eyes: Secure Forensics in Data Center
Networks. In SENT, 2014.

[4] A. Bates, B. Mood, M. Valafar, and K. Butler. Towards
Secure Provenance-based Access Control in Cloud
Environments. In CODASPY, New York, NY, USA, 2013.

[5] A. Bates, D. Tian, K. R. Butler, and T. Moyer. Trustworthy
Whole-System Provenance for the Linux Kernel. In USENIX
Security, 2015.

[6] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance
and scalability of ejb applications. In ACM Sigplan Notices,
volume 37, pages 246–261. ACM, 2002.

[7] L. Chiticariu, W.-C. Tan, and G. Vijayvargiya. DBNotes: A
Post-it System for Relational Databases Based on
Provenance. In SIGMOD, 2005.

[8] A. Gehani, B. Baig, S. Mahmood, D. Tariq, and F. Zaffar.
Fine-grained Tracking of Grid Infections. In GRID’10, 2010.

[9] A. Gehani and U. Lindqvist. Bonsai: Balanced Lineage
Authentication. In ACSAC, 2007.

[10] A. Gehani and D. Tariq. SPADE: Support for Provenance
Auditing in Distributed Environments. In Middleware, 2012.

[11] W. G. J. Halfond and A. Orso. Amnesia: Analysis and
monitoring for neutralizing sql-injection attacks. In ASE,
2005.

[12] R. Hasan, R. Sion, and M. Winslett. The Case of the Fake
Picasso: Preventing History Forgery with Secure
Provenance. In FAST, San Francisco, CA, USA, 2009.

[13] K. He, A. Fisher, L. Wang, A. Gember, A. Akella, and
T. Ristenpart. Next stop, the cloud: Understanding modern
web service deployment in ec2 and azure. In IMC, 2013.

[14] S. N. Jones, C. R. Strong, D. D. E. Long, and E. L. Miller.
Tracking Emigrant Data via Transient Provenance. In
TAPP’11, 2011.

[15] G. Karvounarakis, T. J. Green, Z. G. Ives, and V. Tannen.
Collaborative data sharing via update exchange and
provenance. ACM Trans. Database Syst., 38(3):19:1–19:42,
Sept. 2013.

[16] K. H. Lee, X. Zhang, and D. Xu. High Accuracy Attack
Provenance via Binary-based Execution Partition. In NDSS,
2013.

[17] S. Ma, X. Zhang, and D. Xu. ProTracer: Towards Practical
Provenance Tracing by Alternating Between Logging and
Tainting. In NDSS, 2016.

[18] P. Macko and M. Seltzer. A General-purpose Provenance
Library. In TaPP, 2012.

[19] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in Provenance Systems. In ATC, 2009.

[20] J. Park, D. Nguyen, and R. Sandhu. A Provenance-Based
Access Control Model. In PST, pages 137–144, 2012.

[21] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler. Hi-Fi:
Collecting High-Fidelity Whole-System Provenance. In
ACSAC, Orlando, FL, USA, 2012.

[22] C. Sar and P. Cao. Lineage File System.
http://crypto.stanford.edu/~cao/lineage.html.

[23] M. Stamatogiannakis, H. Kazmi, H. Sharif, R. Vermeulen,
A. Gehani, H. Bos, and P. Groth. Trade-offs in automatic
provenance capture. In IPAW, pages 29–41, 2016.

[24] D. Tariq, B. Baig, A. Gehani, S. Mahmood, R. Tahir,
A. Aqil, and F. Zaffar. Identifying the Provenance of
Correlated Anomalies. In SAC, 2011.

[25] J. Widom. Trio: A System for Integrated Management of
Data, Accuracy, and Lineage. Technical Report 2004-40,
Stanford InfoLab, Aug. 2004.

[26] World Wide Web Consortium. PROV-Overview: An
Overview of the PROV Family of Documents.
http://www.w3.org/TR/prov-overview/, 2013.

[27] L. Zhang, A. Persaud, A. Johnson, and Y. Guan. Detection of
stepping stone attack under delay and chaff perturbations. In
IPCCC, pages 10 pp.–256, April 2006.

[28] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and
M. Sherr. Secure Network Provenance. In SOSP, 2011.

http://www.darkreading.com/attacks-and-breaches/darkleech-apache-attacks-intensify/d/d-id/1109760?
http://www.darkreading.com/attacks-and-breaches/darkleech-apache-attacks-intensify/d/d-id/1109760?
http://www.darkreading.com/attacks-and-breaches/darkleech-apache-attacks-intensify/d/d-id/1109760?
http://www.darkreading.com/attacks-and-breaches/darkleech-apache-attacks-intensify/d/d-id/1109760?
http://www.w3.org/TR/prov-overview/

	Introduction
	Motivation
	Provenance-based solutions

	Design
	Threat Model & Assumptions
	Design Goals
	Network Provenance Functions
	Protocol Parsers
	Audit Event Generation

	Supplemental Tracking Techniques
	Deployment
	Security Analysis

	Implementation
	Performance Evaluation
	Case Studies
	Scenario #1: SQL Injection
	Scenario #2: ImageTragick Exploit
	Scenario #3: Reverse Shell Invocation

	Conclusion
	References

